Aktivasi telur

Peningkatan tajam konsentrasi Ca2+ dalam sitosol tidak hanya memicu reaksi kortikal tetapi juga mendorong perubahan metabolic di dalam sel telur. Sel telur yang belum difertilasi mempunyai metabolisme yang sangat lambat, tetapi dalam tempo beberapa menit setelah fertilisasi, laju respirasi seluler dan sintesis protein meningkat sangat besar. Dnegan perubahan cepat ini, sel telur itu disebut diaktifkan.

Meskipun pengikatan dan penyatuan sperma adalah pemicu bagi aktivasi sel telur, sel-sel sperma tidak menyumbangkan bahan-bahan apapun yang diperlukan agar aktivasi itu dapat berlangsung.

Pembuahan adalah bersatunya oosit (telur) dengan sperma membentuk zigot. Pada proses pembuahan ini terjadi percampuran inti sel telur dan inti sperma. Kedua inti ini masing-masing mengandung gen (pembawa sifat keturunan) sebanyak satu sel (haploid).

Hanya satu sperma yang dibutuhkan untuk membuahi satu sel telur (monosperm). Meskipun berjuta-juta spermatozoa dikeluarkan pada saat pemijahan dan menempel pada sel telur tetapi hanya satu yang dapat melewati mikrofil, satu-satunya lubang masuk spermatozoa pada sel telur. Kepala spermatozoa menerobos mikrofil dan bersatu dengan inti sel telur, sedangkan ekornya tertinggal pada saluran mikrofil tersebut dan berfungsi sebagai sumbat untuk mencegah spermatozoa yang lain masuk.

Cara lain yang digunakan sel telur mencegah sperma lain masuk adalah terjadinya reaksi kortikal mikrofil menjadi lebih sempit dan spermatozoa yang bertumpuk pada saluran mikrofil terdorong keluar. Reaksi korteks juga berfungsi membersihkan korion dari spermatozoa yang melekat karena akan mengganggu proses pernafasan zigot yang sedang berkembang.

Ada beberapa hal yang mendukung berlangsungnya pembuahan yaitu spermatozoa yang tadinya tidak bergerak dalam cairan plasmanya, akan bergerak setelah bersentuhan dengan air dan dengan bantuan ekornya, bergerak ke arah telur. Selain itu, telur mengeluarkan zat gimnogamon yang berperan menarik spermatozoa ke arahnya.

Perkembangan sel telur (oosit) diawali dari germ cell yang terdapat dalam lamela dan membentuk oogonia. Oogonia yang tersebar dalam ovarium menjalankan suksesi pembelahan mitosis dan ditahan pada “diploten” dari profase meiosis pertama. Pada stadia, ini oogonia dinyatakan sebagai oosit primer (Harder 1975).

Oosit primer kemudian menjalankan masa tumbuh yang meliputi

dua fase. Pertama adalah fase previtelogenesis, ketika ukuran oosit membesar akibat pertambahan volume sitoplasma (endogenous vitelogenesis), namun belum terjadi akumulasi kuning telur. Kedua adalah fase vitelogenesis, ketika terjadi akumulasi material kuning telur yang disintesis oleh hati, kemudian dibebaskan ke darah dan dibawa ke dalam oosit secara mikropinositosis (Zohar, 1991; Jalabert dan Zohar, 1982). Peningkatan ukuran indeks gonad somatik atau perkembangan ovarium disebabkan oleh perkembangan stadia oosit. Pada saat perkembangan oosit terjadi perubahan morfologis yang mencirikan stadianya.

Menurut Nagahama (1983) stadium oosit dapat dicirikan berdasarkan volume sitoplasma, penampilan nukleus dan nukleolus, serta keberadaan butiran kuning telur. Berdasarkan kriteria ini, oosit dapat diklasifikasikan ke dalam beberapa kelas. Yamamoto dalam Nagahama (1983) membaginya ke dalam 8 kelas, yaitu stadia kromatin-nukleolus, perinukleolus (yang terdiri atas awal dan akhir nukleolus), stadium oil drop stadium yolk primer, sekunder, tertier, dan stadium matang. Sedangkan Chinabut et al. (1991) membagi oosit dalam 6 kelas untuk Clarias sp, dimana stadia nukleolus dan perinukleolus dikategorikan sebagai stadium pertama, dan setiap stadium dicirikan sebagai berikut:

 

–          stadium 1 : Oogonia dikelilingi satu lapis set epitel dengan pewarnaan

hematoksilin-eosin plasma berwarna merah jambu, dengan inti yang besar di tengah.

–          stadium 2 : Oosit berkembang ukurannya, sitoplasma bertambah besar, inti biru terang dengan pewarnaan, dan terletak masih di tengah sel. Oosit dilapisi oleh satu lapis epitel.

–          stadium 3 : Pada stadium ini berkembang sel folikel dan oosit membesar dan provitilin nukleoli mengelilingi inti.

–          stadium 4 : Euvitilin inti telah berkembang dan berada disekitar selaput inti. Stadium ini merupakan awal vitelogenesis yang ditandai dengan adanya butiran kuning telur pada sitoplasma. Pada stadium ini, oosit dikelilingi oleh dua lapis sel dan lapisan zona radiata tampak jelas pada epitel folikular.

–          stadium 5 : Stadia peningkatan ukuran oosit karena diisi oleh kuning telur. Butiran kuning telur bertambah besar dan memenuhi sitoplasma dan zona radiata terlihat jelas.

–          stadium 6 : Inti mengecil dan selaput inti tidak terlihat, inti terletak di tepi. Zona radiata, sel folikel, dan sel teka terlihat jelas.

Pengetahuan tingkat kematangan gonad sangat penting dan sangat menunjang keberhasilan dalam membenihkan ikan karena berkaitan erat dengan pemilihan caloncalon induk ikan yang akan dipijahkan. Semakin tinggi tingkat perkembangan gonad, telur yang terkandung di dalamnya semakin membesar sebagai hasil dari akumulasi kuning telur, hidrasi, dan pembentukan butir-butir minyak yang berjalan secara bertahap.

 

Secara garis besar, perkembangan gonad ikan dapat dibagi menjadi dua tahap, yaitu tahap pertumbuhan gonad ikan sampai ikan menjadi dewasa kelamin dan selanjutnya adalah pematangan gamet. Tahap pertama berlangsung mulai dari ikan menetas hingga mencapai dewasa kelamin dan tahap kedua dimulai setelah ikan mencapai dewasa, dan terus berkembang selama fungsi reproduksi masih tetap berjalan normal (Lagler et al. 1977).

Tam et al. (1986) menyatakan bahwa pada saat menjelang ovulasi akan terjadi peningkatan diameter oosit karena diisi oleh massa kuning telur yang homogen akibat adanya peningkatan kadar estrogen dan vitelogenin. Sementara itu, menurut Bagenal (1969), ukuran telur juga berperan dalam kelangsungan hidup ikan. Benih ikan brown trout yang berasal dari telur yang berukuran besar mempunyai daya hidup yang lebih tinggi daripada benih ikan yang berasal dari telur yang berukuran kecil. Hal ini terjadi karena kandungan kuning telur yang berukuran besar lebih banyak sehingga larva yang dihasilkan mempunyai persediaan makanan yang cukup untuk membuat daya tahan tubuh yang lebih tinggi dibanding dengan telur-telur yang berukuran kecil.

Woynarovich dan Horvath (1980) menyatakan bahwa induk yang pantas dipijahkan adalah induk yang telah melewati fase pembentukan kuning telur (fase vitellogenesis) dan masuk ke fase dorman. Fase pembentukan kuning telur dimulai sejak terjadinya penumpukan bahan-bahan kuning telur da!am sel telur dan berakhir setelah sel telur mencapai ukuran tertentu atau nukleolus tertarik ke tengah nukleus. Setelah fase pembentukan kuning telur berakhir, sel telur tidak mengalami perubahan bentuk selama beberapa saat, tahap ini disebut fase istirahat (dorman). Menurut Lam (1985), apabila rangsangan diberikan pada saat ini, maka akan menyebabkan terjadinya migrasi inti ke perifer, kemudian inti pecah atau melebur pada saat

pematangan oosit, ovulasi (pecahnya folikel), dan oviposisi. Menurut Suyanto (1986), bilamana kondisi lingkungan tidak cocok dan rangsangan tidak tersedia maka telur dorman tersebut akan mengalami degenerasi (rusak) lalu diserap kembali oleh lapisan folikel melalui atresia. Faktor-faktor eksternal lain yang menyebabkan terjadinya atresia adalah ketersediaan pakan (Bagenal 1978), sedangkan faktor internal adalah umur telur.

 

Vitelogenesis

Sintesis vitelogenin (prekursor kuning telur) di dalam hati disebut vitelogenesis. Vitelogenin diangkut dalam darah menuju oosit, lalu diserap secara selektif dan disimpan sebagai kuning telur. Vitelogenin ini berupa glikofosfoprotein yang mengandung kira-kira 20% lemak, terutama fosfolipid, trigliserida, lipoprotein, dan kolesterol. Berat molekul vitelogenin untuk beberapa jenis ikan diketahui antara 140- 220 kDa (Tyler 1991; Komatsu dan Hayashi 1997).

Proses oogenesis pada teleost terdiri atas dua fase, yaitu pertumbuhan oosit (vitelogenesis) dan pematangan oosit. Vitelogenesis merupakan aspek penting dalam pertumbuhan oosit yang meliputi rangkaian proses (1) adanya sirkulasi estrogen (estradiol-17b) dalam darah menggertak hati untuk mensintesis dan mensekresikan vitelogenin yang merupakan prekursor protein kuning telur; (2) vitelogenin diedarkan menuju lapisan permukaan oosit yang sedang tumbuh; (3) secara selektif, vitelogenin akan ditangkap oleh reseptor dalam endositosis, dan (4) terjadi translokasi sitoplasma membentuk badan kuning telur bersamaan dengan pembelahan proteolitik dari vitelogenin menjadi subunit lipoprotein kuning telur, lipovitelin, dan fosvitin. Adanya vitelogenin menunjukkan terjadinya akumulasi lipoprotein kuning telur di dalam oosit. Pada beberapa jenis ikan selama pertumbuhan oosit terjadi peningkatan Indeks Somatik Gonad (IGS) 1 sampai 20% atau lebih. Pada ikan betina, ovari berespons terhadap peningkatan konsentrasi gonadotropin dengan meningkatkan secara tidak langsung produksi estrogen, yakni estradiol-17b (E2). Estradiol-17b beredar menuju hati, memasuki jaringan dengan cara difusi dan secara spesifik merangsang sintesis vitelogenin (Ng dan Idler 1983). Aktivitas vitelogenesis ini menyebabkan nilai indeks hepatosomatik (IHS) dan indeks gonadosomatik (IGS) ikan meningkat (Cerda et al. 1996).

 

Pembesaran oosit disebabkan terutama oleh penimbunan kuning telur. Seperti pada kebanyakan ikan, kuning telur merupakan komponen penting oosit ikan Teleostei. Ada tiga tipe material kuning telur pada ikan Teleostei: butiran kecil minyak, gelembung kuning telur (yolk vesicle) dan butiran kuning telur (yolk globule). Secara umum, butiran kecil minyak yang kita kenal dengan lipid yang berantai panjang (asam lemak tidak jenuh) pertama kali muncul di daerah perinuklear dan kemudian berpindah ke periferi (tepi sel) pada tahap selanjutnya. Urutan kemunculan material kuning telur bervariasi antarspesies. Pada rainbow trout, butiran kecil muncul segera setelah dimulainya pembentukan gelembung kuning telur (Yamamoto et al. 1965 dalam Nagahama 1983).

 

Fenomena penimbunan material kuning telur oleh oosit ikan dibagi menjadi dua fase, yakni sintesis kuning telur di dalam oosit atau vitelogenesis endogen dan penimbunan prekursor (bahan pembentuk) kuning telur yang disintesis di luar oosit atau vitelogenesis eksogen (Matty 1985). Gelembung kuning telur positif-PAS (mukopolisakarida atau glikoprotein) umumnya merupakan struktur yang pertama muncul dalam sitoplasma oosit selama pertumbuhan sekunder oosit, dan pertama kali muncul di zona terluar dan zona midkortikal pada oosit.

Ketika vitelogenesis berlangsung, sebagian besar sitoplasma telur matang ditempati oleh banyak gelembung kuning telur yang padat dengan asam lemak dan dikelilingi oleh selapis membran pembatas. Selama tahap akhir vitelogenesis, globula kuning telur beberapa ikan Teleostei bergabung satu sama lain membentuk masa tunggal kuning telur.

Perkembangan gonad ikan betina terdiri atas beberapa tingkat yang dapat

didasarkan atas pengamatan secara mikroskopis dan makroskopis. Secara mikroskopis perkembangan telur diamati untuk menilai perkembangan ovarium antara lain tebal dinding indung telur, keadaan pembuluh darah, inti butiran minyak, dan kuning telur. Secara makroskopis perkembangan ovarium ditentukan dengan mengamati warna indung telur, ukuran butiran telur, dan volume rongga perut ikan. Pada ovarium ikan terdapat bakal sel telur yang dilindungi suatu jaringan pengikat yang bagian luarnya dilapisi peritoneum dan bagian dalamnya dilapisi epitelium. Sebagian dari sel-sel epitelium akan membesar dan berisi nukleus, yang kemudian butiran ini kelak akan menjadi telur. Selama perkembangannya, ukuran oosit akan bervariasi. Pada tahap perkembangan awal, oogonia terlihat masih sangat kecil,

berbentuk bulat dengan inti sel yang sangat besar dibandingkan dengan sitoplasmanya. Oogonia terlihat berkelompok tapi kadang-kadang ada juga yang berbentuk tunggal. Sementara itu oogonia terus membelah diri dengan cara mitosis. Pada ikan yang mempunyai siklus reproduksi tahunan atau tengah tahunan akan terlihat adanya puncak-puncak pembelahan oogonia. Pada ikan yang memijah sepanjang tahun, perbanyakan oogonia akan terus menerus sepanjang tahun.Transformasi oogonia menjadi oosit primer banyak terjadi pada tahap pertumbuhan yang ditandai dengan munculnya kromosom. Segera setelah itu, folikel berubah bentuk, dari semula yang berbentuk skuamosa menjadi berbentuk kapsul oosit. Inti sel terletak pada bagian sentral dibungkus oleh lapisan sitoplasma yang tipis. Pada perkembangan selanjutnya, oosit membentuk lapisan korion, membran, granulosa, membran, dan teka. Juga butir-butir lemak mulai terlihat ditumpuk pada sitoplasma dan bersamaan dengan itu muncul cortical alveoli. Pada saat ini, ketersediaan vitamin C mutlak diperlukan karena dengan peningkatan kadar asam lemak, kebutuhan vitamin C semakin meningkat pula. Vitamin C dapat mencegah terjadinya oksidasi pada unitunit asam lemak, terutama asam lemak tidak jenuh (Machlin 1990). Butir-butir lemak ini selanjutnya akan bertambah besar pada vitelogenesis yang diawali dengan pembentukan vakuola-vakuola yang kemudian diikuti dengan munculnya globula kuning telur, bersamaan dengan itu oosit membengkak secara menyolok. Kuning telur pada ikan terdiri atas fosfoprotein dan lipoprotein yang dihasilkan oleh hati kemudian disalurkan ke dalam peredaran darah.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s